HLA-B-associated transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in BMP signaling
نویسندگان
چکیده
منابع مشابه
Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis
Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation...
متن کاملLeupaxin negatively regulates B cell receptor signaling.
The role of the paxillin superfamily of adaptor proteins in B cell antigen receptor (BCR) signaling has not been studied previously. We show here that leupaxin (LPXN), a member of this family, was tyrosine-phosphorylated and recruited to the plasma membrane of human BJAB lymphoma cells upon BCR stimulation and that it interacted with Lyn (a critical Src family tyrosine kinase in BCR signaling) ...
متن کاملArginine Methylation Initiates BMP-Induced Smad Signaling.
Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the ...
متن کاملTGF-Beta Induced Erk Phosphorylation of Smad Linker Region Regulates Smad Signaling
The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or...
متن کاملNLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling
The Wnt signaling pathway is essential in regulating various cellular processes. Different mechanisms of inhibition for Wnt signaling have been proposed. Besides β-catenin degradation through the proteasome, nemo-like kinase (NLK) is another molecule that is known to negatively regulate Wnt signaling. However, the mechanism by which NLK mediates the inhibition of Wnt signaling was not known. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Death & Disease
سال: 2011
ISSN: 2041-4889
DOI: 10.1038/cddis.2011.114